Biological insights from large-scale protein copy number measurements

David O'Connor Centre for Proteomic Research University of Southampton, UK

Plan of talk

The case for absolute quantification

- Which absolute quantification method?
 Use of a data-independent acquisition approach
- What can you do with such data?
 Case history Chlamydia trachomatis

Better Quantification Absolute versus relative quantification

Measuring numbers of molecules/cell gives more information

[Protein] State 1 [Protein] State 2

Noise?

Data loss associated with relative quantification (2-D gels, SILAC, iTRAQ etc.)

	Spot Volume		Test
	Test	Control	Control
Protein A	100.1	125.2	0.8
Protein B	2160.3	n.d.	?

Ranking proteins in terms of molecules/cell can be useful...

RANK	PROTEIN	MOLECULES/CELL	POTENTIAL AS DRUG TARGET?
1	Protein A	1 x 10 ⁷	Bad
2	Protein B	1 x 10 ⁶	
3	Protein C	1 x 10 ⁵	
4	Protein D	1 x 10 ⁴	
5	Protein E	1 x 10 ³	
-	-	-	
-	-	-	
-	•	-	
25	Protein Y	<10	
26	Protein Z	<10	Good

Identifying and ranking factors that determine protein abundance...

Test parameter

E.g. codon usage, length, hydrophilicity, pl, [mRNA], location of gene in genome etc.

Finding out where a cell is investing its energy

E.g. protein synthesis consumes ca. two-thirds of the total energy produced by a rapidly growing *Escherichia coli* cell

Plan of talk

The case for absolute quantification

What can you do with such data?
 Case history – Chlamydia trachomatis

Which absolute quantification method? Use of a data-independent acquisition (DIA) strategy

Review: Vaudel, M. et al. (2010) Protein and peptide quantification: a map of the minefield Proteomics 10: 650-670.

Which absolute quantification method?

Limitations of a data-dependent acquisition (DDA) strategy

Only 7 out of 27 labs identified all 20 proteins correctly
Only <u>one</u> lab saw all proteotypic peptides – why?

Bell, A.W. et al. (2009) Nature Methods. 6: 423-430.

Which absolute quantification method? Limitations of a data-dependent acquisition (DDA) strategy

- Serial selection of precursor ions biases analysis to high abundance components
- Precursor ion scans are stochastic different ions may be selected for fragmentation in different runs → irreproducibility
- Selection windows of 2-4 Da means additional precursor may be selected for fragmentation along with target ion → lower signal:noise

'Traditional' LC - Tandem Mass Spectrometry One slice at a time

Label-free proteomics Principle of LC-MS^E

Label-free proteomics Principle of LC-MS^E

Plan of talk

The case for absolute quantification

- Which absolute quantification method?
 Use of a data-independent acquisition approach
- What can you do with such data?
 Case history Chlamydia trachomatis

Chlamydia trachomatis A widespread and important pathogen

http://www.nature.com/eye/journal/v19/n10/fig_tab/6701963f5.html

- Causes trachoma the leading cause of preventable blindness
- ~84 million people have active infection
- Also major cause of genital tract infections leads to pelvic inflammatory disease and tubal factor infertility

Life cycle of Chlamydia trachomatis Elementary Bodies ↔ Reticulate Bodies

Chlamydia trachomatis Elementary Bodies and Reticulate Bodies

EBs

- Extracellular, infectious form
- Metabolically quiescent

RBs

- Intracellular, non-infectious
- Active, replicating stage

Label-free proteomics Dynamic range and reproducibility 1.00E+04 MOMP 10 Molecules/cell 1.00E+03 Log₁₀ Molecules/cell 1.00E+03 1.00E+02 **Ribosomal protein L21** 1.00E+02 Log Lipoic acid synthetase 1.00E+01 1.00E+01 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+04 1.00E+05 1.00E+06 1.00E+07 Log₁₀ Top 3 peptide intensity sum Log₁₀ Top 3 peptide intensity sum

 $R^2 = 0.9967$

Technical replicates: ~12% CV Biological replicates: ~ 16% CV

R C P

Label-free proteomics Dynamic range and reproducibility

Label-free proteomics Peptides used to assign proteins – LC-MS^E vs. iTRAQ

Label-free proteomics Top ten most abundant proteins in EBs

Locus	Gene name	Protein description	(molecules/cell)
CTL0050	ompA	major outer membrane protein	272,790
CTL0574	tufA	translation elongation factor Tu	215,611
CTL0652	dnaK	chaperone protein	166,008
CTL0365	hsp60_1	chaperonin GroEL	130,043
CTL0803	mip	peptidyl-prolyl cis-trans isomerase	129,190
CTL0847		conserved hypothetical protein	114,533
CTL0568	rpIL	LSU ribosomal protein L12P (L7/L12)	100,628
CTL0887		putative exported protein	84,041
CTL0874		conserved hypothetical protein	80,739
CTL0488	acpP	acyl carrier protein	66,243

FR

Label-free proteomics

Proteins that are differentially expressed between EBs and RBs

Glycolysis

Label-free proteomics

Proteins that are differentially expressed between EBs and RBs

Where Chlamydia trachomatis invests its ATP Energy expenditure by functional category 32 4 (kcal/molecule) x10⁻¹⁷ 27 Energy expended 3 3 2

5

Fatty Acid & Phospholipid.

Energy Metabolism

DNA Replication

5

3

Other. Categories

hypothetical protein

1

1

0

Base & Nucleotide Metabolism

Amino acid biosynthesis

3

Cellular Processes

CellEnvelope

2

Central Intermediary.

Transport and binding Proteins **Functional distribution**

6

2

Quantification of the Chlamydia trachomatis proteome Some conclusions

- Absolute quantification of most of predicted proteome in both RBs and EBs
- Rank order of expression reveals hitherto hypothetical proteins are among the most abundant in Chlamydia
- Dynamic expression range of >3 logs 37 pg (AMP nucleosidase) to 29 ng (MOMP).
- EBs appear to have full complement of proteins even though metabolically quiescent
- Levels of most proteins are down in EBs but some accumulate (in anticipation of infection?)

Quantification of the *Chlamydia trachomatis* proteome Some conclusions (cont.)

- LC-MS^E provides more extensive and robust qualitative and quantitative data relative to iTRAQ
- >71% of predicted *C. trachomatis* proteome is expressed during transition from RB to EB
- Absolute quantification data obtained for >62% of predicted proteome
- Differential expression data indicates C. *trachomatis* shuts down metabolic activity during the transition from RB to EB (e.g. glycolysis, TCA)
- Cell wall enzymes expressed in RBs suggests novel role
- Majority of energy invested in protein translation machinery, one cell surface component and many hypothetical proteins

Label-free quantification Some key challenges and issues

- Given sensitivity of detection is <10 molecules/cell, why is 'only' 71% of predicted proteome detected?
- Use of LC-MS^E for the quantification of PTMs?
- Faster cycling rate for MS^E (>10 Hz)?
- Multiplexing of LC-MS^E analyses?

Biological insights from large-scale protein copy number measurements Acknowledgements

- Paul Skipp (CPR)
- Erika Parkinson (CPR)
- Pete Boyd (CPR)
- Shannon Pead (CPR)
- Ian Clarke (SGH)
- Lesley Cutcliffe (SGH)

- Jim Langridge (Waters)
- Chris Hughes (Waters)
- Therese McKenna (Waters)
- Simon Harris (Sanger)
- Helena Seth-Smith (Sanger)
- Nick Thomson (Sanger)

Funders: BBSRC, EU, MRC, NIHR, Unilever plc, Wellcome Trust

