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Plan of talk

 The case for absolute quantification

 Which absolute quantification method?
Use of a data-independent acquisition approach

 What can you do with such data?

Case history – Chlamydia trachomatis
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Better Quantification
Absolute versus relative quantification



C
P

R

Advantages of Absolute Quantification
Measuring numbers of molecules/cell gives more information

[Protein]

State 1

[Protein]

State 2

Significant Noise?
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Advantages of Absolute Quantification
Data loss associated with relative quantification (2-D gels, SILAC, iTRAQ etc.)
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Advantages of Absolute Quantification
Ranking proteins in terms of molecules/cell can be useful...

RANK PROTEIN MOLECULES/CELL

1 Protein A 1 x 107

2 Protein B 1 x 106

3 Protein C 1 x 105

4 Protein D 1 x 104

5 Protein E 1 x 103
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Advantages of Absolute Quantification
Identifying and ranking factors that determine protein abundance...

Absolute 

abundance

Test parameter

E.g. codon usage, length, hydrophilicity, pI, 

[mRNA], location of gene in genome etc. 
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Advantages of Absolute Quantification
Finding out where a cell is investing its energy

E.g. protein synthesis consumes ca. two-thirds of the total 

energy produced by a rapidly growing Escherichia coli cell 

Jewett, M.C. et al. (2009) J. Bacteriol. 191: 1083-1091

ATP Regenerating System
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Which absolute quantification method?
Use of a data-independent acquisition (DIA) strategy

LC-

MSE

Review: Vaudel, M. et al. (2010) Protein and peptide quantification: a map of the minefield Proteomics 10: 650-670.
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Which absolute quantification method?
Limitations of a data-dependent acquisition (DDA) strategy

 Only 7 out of 27 labs identified all 20 proteins correctly

 Only one lab saw all proteotypic peptides – why?

Bell, A.W. et al. (2009) Nature Methods. 6: 423-430.
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Which absolute quantification method?
Limitations of a data-dependent acquisition (DDA) strategy

 Serial selection of precursor ions biases analysis to high abundance components

 Precursor ion scans are stochastic - different ions may be selected for fragmentation 

in different runs  irreproducibility

 Selection windows of 2-4 Da means additional precursor may be selected for 

fragmentation along with target ion  lower signal:noise
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MS1 MS2

MS1 MS2

‘Traditional’ LC - Tandem Mass Spectrometry
One slice at a time
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Label-free proteomics 
Principle of LC-MSE

MS1 MS2

Cycling between

Low and High energy

Low energy 10eV

High energy 15-40eV
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Label-free proteomics 
Principle of LC-MSE
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Chlamydia trachomatis
A widespread and important pathogen

• Causes trachoma - the leading cause of preventable blindness

• ~84 million people have active infection 

• Also major cause of genital tract infections – leads to pelvic 

inflammatory disease and tubal factor infertility

http://www.nature.com/eye/journal/v19/n10/fig_tab/6701963f5.html
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Life cycle of Chlamydia trachomatis
Elementary Bodies  Reticulate Bodies

Nucleus

hours

Inclusion

Transformation

of RB to EB

Transformation

of EB to RB
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Chlamydia trachomatis

Elementary Bodies and Reticulate Bodies

EBs

• Extracellular, infectious form

• Metabolically quiescent

RBs

• Intracellular, non-infectious 

• Active, replicating stage
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Label-free proteomics
Dynamic range and reproducibility
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Label-free proteomics
Dynamic range and reproducibility

R² = 0.9605
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Label-free proteomics
Peptides used to assign proteins – LC-MSE vs. iTRAQ
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Label-free proteomics
Top ten most abundant proteins in EBs

Locus Gene name Protein description

EB 

(molecules/cell)

CTL0050 ompA major outer membrane protein 272,790

CTL0574 tufA translation elongation factor Tu 215,611

CTL0652 dnaK chaperone protein 166,008

CTL0365 hsp60_1 chaperonin GroEL 130,043

CTL0803 mip peptidyl-prolyl cis-trans isomerase 129,190

CTL0847 conserved hypothetical protein 114,533

CTL0568 rplL LSU ribosomal protein L12P (L7/L12) 100,628

CTL0887 putative exported protein 84,041

CTL0874 conserved hypothetical protein 80,739

CTL0488 acpP acyl carrier protein 66,243
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Label-free proteomics
Proteins that are differentially expressed between EBs and RBs
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Glucose-6-phosphate

Phosphofructokinase

Triosephosphate isomerase

GAP dehydrogenase

Phosphoglycerate kinase

Phosphoglycerate mutase

Enolase

Pyruvate kinase

Pyruvate dehydrogenase

molecules/cell

Reticulate bodies

Elementary bodies

glucose

glucose-6-phosphate

fructose-6-phosphate

fructose 1,6-diphosphate

glyceraldehyde 3-phosphate

1,3-diphosphoglycerate

3-phosphoglycerate

2-phosphoglycerate

Phosphoenolpyruvate

pyruvate

citrate

isocitrate

2-oxogluturate

Succinyl -CoA

succinate

fumarate

malate

oxaloacetate

 Succinate dehydrogenase  Succinyl -CoA synthetase

malate dehydrogenase

 α-ketoglutarate dehydrogenase

Acetyl-CoA

ATP

ATP

ATP

Glycolysis

TCA cycle

X

X

X
Enzymes down-regulated in EBs



C
P

R

Label-free proteomics
Proteins that are differentially expressed between EBs and RBs
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Where Chlamydia trachomatis invests its ATP

Energy expenditure by functional category
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Quantification of the Chlamydia trachomatis proteome

 Absolute quantification of most of predicted 

proteome in both RBs and EBs

 Rank order of expression reveals hitherto 

hypothetical proteins are among the most 

abundant in Chlamydia

 Dynamic expression range of >3 logs - 37 pg 

(AMP nucleosidase) to 29 ng (MOMP).

 EBs appear to have full complement of 

proteins even though metabolically quiescent

 Levels of most proteins are down in EBs but 

some accumulate (in anticipation of 

infection?)

Some conclusions
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Quantification of the Chlamydia trachomatis proteome

Some conclusions (cont.)

 LC-MSE provides more extensive and robust qualitative and quantitative data 

relative to iTRAQ

 >71% of predicted C. trachomatis proteome is expressed during transition from 

RB to EB

 Absolute quantification data obtained for >62% of predicted proteome

 Differential expression data indicates C. trachomatis shuts down metabolic 

activity during the transition from RB to EB (e.g. glycolysis, TCA)

 Cell wall enzymes expressed in RBs – suggests novel role

 Majority of energy invested in protein translation machinery, one cell surface 

component and many hypothetical proteins
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Label-free quantification

Some key challenges and issues

 Given sensitivity of detection is <10 molecules/cell, 

why is ‘only’ 71% of predicted proteome detected?

 Use of LC-MSE for the quantification of PTMs?

 Faster cycling rate for MSE (>10 Hz)?

 Multiplexing of LC-MSE analyses?
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